本站资源收集于互联网,不提供软件存储服务,每天免费更新优质的软件以及学习资源!

创建LLM以在Python中使用张量流进行测试

网络教程 app 1℃

创建LLM以在Python中使用张量流进行测试

嗨,

我想测试一个小型的llm程序,我决定用tensorflow来做。

我的源代码可以在 github./victordalet/first_llm

一、要求

您需要安装tensorflow和numpy

pip install ‘numpy<2’pip install tensorflow

ii – 创建数据集

您需要创建一个数据字符串数组来计算一个小数据集,例如我创建:

data = [ "salut ment ca va", "je suis en train de coder", "le machine learning est une branche de l’intelligence artificielle", "le deep learning est une branche du machine learning",]

如果你没有灵感,可以在kaggle上找到一个数据集。

iii – 构建模型并训练它

为此,我使用各种方法创建了一个小型 llm 类。

class llm: def __init__(self): self.model = none self.max_sequence_length = none self.input_sequences = none self.total_words = none self.tokenizer = none self.tokenize() self.create_input_sequences() self.create_model() self.train() test_sentence = "pour moi le machine learning est" print(self.test(test_sentence, 10)) def tokenize(self): self.tokenizer = tokenizer() self.tokenizer.fit_on_texts(data) self.total_words = len(self.tokenizer.word_index) + 1 def create_input_sequences(self): self.input_sequences = [] for line in data:token_list = self.tokenizer.texts_to_sequences([line])[0]for i in range(1, len(token_list)): n_gram_sequence = token_list[:i + 1] self.input_sequences.append(n_gram_sequence) self.max_sequence_length = max([len(x) for x in self.input_sequences]) self.input_sequences = pad_sequences(self.input_sequences, maxlen=self.max_sequence_length, padding=’pre’) def create_model(self): self.model = sequential() self.model.add(embedding(self.total_words, 100, input_length=self.max_sequence_length – 1)) self.model.add(lstm(150, return_sequences=true)) self.model.add(dropout(0.2)) self.model.add(lstm(100)) self.model.add(dense(self.total_words, activation=’softmax’)) def train(self): self.model.pile(loss=’categorical_crossentropy’, optimizer=’adam’, metrics=[‘accuracy’]) x, y = self.input_sequences[:, :-1], self.input_sequences[:, -1] y = tf.keras.utils.to_categorical(y, num_classes=self.total_words) self.model.fit(x, y, epochs=200, verbose=1)

iv – 测试

最后,我使用类的构造函数中调用的测试方法来测试模型。

警告:如果生成的单词与前一个单词相同,我会在此测试函数中阻止生成。

def test(self, sentence: str, nb_word_to_generate: int): last_word = "" for _ in range(nb_word_to_generate):token_list = self.tokenizer.texts_to_sequences([sentence])[0]token_list = pad_sequences([token_list], maxlen=self.max_sequence_length – 1, padding=’pre’)predicted = np.argmax(self.model.predict(token_list), axis=-1)output_word = ""for word, index in self.tokenizer.word_index.items(): if index == predicted: output_word = word breakif last_word == output_word: return sentencesentence += " " + output_wordlast_word = output_word return sentence

以上就是创建 LLM 以在 Python 中使用张量流进行测试的详细内容,更多请关注范的资源库其它相关文章!

转载请注明:范的资源库 » 创建LLM以在Python中使用张量流进行测试

喜欢 (0)