本站资源收集于互联网,不提供软件存储服务,每天免费更新优质的软件以及学习资源!

构建企业代理系统:核心组件设计与优化

网络教程 app 1℃

构建企业代理系统核心组件设计与优化

介绍

构建企业级人工智能代理需要仔细考虑组件设计、系统架构和工程实践。本文探讨了构建健壮且可扩展的代理系统的关键组件和最佳实践。

1. 提示模板工程1.1 模板设计模式

from typing import protocol, dictfrom jinja2 import templateclass prompttemplate(protocol): def render(self, **kwargs) -> str: passclass jinjaprompttemplate: def __init__(self, template_string: str): self.template = template(template_string) def render(self, **kwargs) -> str: return self.template.render(**kwargs)class promptlibrary: def __init__(self): self.templates: dict[str, prompttemplate] = {} def register_template(self, name: str, template: prompttemplate): self.templates[name] = template def get_template(self, name: str) -> prompttemplate: return self.templates[name]

1.2 版本控制和测试

class promptversion: def __init__(self, version: str, template: str, metadata: dict): self.version = version self.template = template self.metadata = metadata self.test_cases = [] def add_test_case(self, inputs: dict, expected_output: str): self.test_cases.append((inputs, expected_output)) def validate(self) -> bool: template = jinjaprompttemplate(self.template) for inputs, expected in self.test_cases:result = template.render(**inputs)if not self._validate_output(result, expected): return false return true

. 分层内存系统 .1 内存架构

from typing import any, listfrom datetime import datetimeclass memoryentry: def __init__(self, content: any, importance: float): self.content = content self.importance = importance self.timestamp = datetime.now() self.access_count = 0class memorylayer: def __init__(self, capacity: int): self.capacity = capacity self.memories: list[memoryentry] = [] def add(self, entry: memoryentry): if len(self.memories) >= self.capacity:self._evict() self.memories.append(entry) def _evict(self): # implement memory eviction strategy self.memories.sort(key=lambda x: x.importance * x.access_count) self.memories.pop(0)class hierarchicalmemory: def __init__(self): self.working_memory = memorylayer(capacity=5) self.short_term = memorylayer(capacity=50) self.long_term = memorylayer(capacity=1000) def store(self, content: any, importance: float): entry = memoryentry(content, importance) if importance > 0.8:self.working_memory.add(entry) elif importance > 0.5:self.short_term.add(entry) else:self.long_term.add(entry)

.2 内存检索和索引

from typing import list, tupleimport numpy as npfrom sklearn.metrics.pairwise import cosine_similarityclass memoryindex: def __init__(self, embedding_model): self.embedding_model = embedding_model self.embeddings = [] self.memories = [] def add(self, memory: memoryentry): embedding = self.embedding_model.embed(memory.content) self.embeddings.append(embedding) self.memories.append(memory) def search(self, query: str, k: int = 5) -> list[tuple[memoryentry, float]]: query_embedding = self.embedding_model.embed(query) similarities = cosine_similarity([query_embedding], self.embeddings )[0] top_k_indices = np.argsort(similarities)[-k:] return [(self.memories[i], similarities[i]) for i in top_k_indices ]

3. 可观察的推理链3.1 链结构

from typing import list, optionalfrom dataclasses import dataclassimport uuid@dataclassclass thoughtnode: content: str confidence: float supporting_evidence: list[str]class reasoningchain: def __init__(self): self.chain_id = str(uuid.uuid4()) self.nodes: list[thoughtnode] = [] self.metadata = {} def add_thought(self, thought: thoughtnode): self.nodes.append(thought) def get_path(self) -> list[str]: return [node.content for node in self.nodes] def get_confidence(self) -> float: if not self.nodes:return 0.0 return sum(n.confidence for n in self.nodes) / len(self.nodes)

3.2 链条监测与分析

import loggingfrom opentelemetry import tracefrom prometheus_client import histogramreasoning_time = histogram( ‘reasoning_chain_duration_seconds’, ‘time spent in reasoning chain’)class chainmonitor: def __init__(self): self.tracer = trace.get_tracer(__name__) def monitor_chain(self, chain: reasoningchain): with self.tracer.start_as_current_span("reasoning_chain") as span:span.set_attribute("chain_id", chain.chain_id)with reasoning_time.time(): for node in chain.nodes: with self.tracer.start_span("thought") as thought_span:thought_span.set_attribute( "confidence", node.confidence)logging.info( f"thought: {node.content} " f"(confidence: {node.confidence})")

4. 组件解耦和复用4.1 界面设计

from abc import abc, abstractmethodfrom typing import generic, typevart = typevar(‘t’)class ponent(abc, generic[t]): @abstractmethod def process(self, input_data: t) -> t: passclass pipeline: def __init__(self): self.ponents: list[ponent] = [] def add_ponent(self, ponent: ponent): self.ponents.append(ponent) def process(self, input_data: any) -> any: result = input_data for ponent in self.ponents:result = ponent.process(result) return result

4.2 组件注册

class ponentregistry: _instance = none def __new__(cls): if cls._instance is none:cls._instance = super().__new__(cls)cls._instance.ponents = {} return cls._instance def register(self, name: str, ponent: ponent): self.ponents[name] = ponent def get(self, name: str) -> optional[ponent]: return self.ponents.get(name) def create_pipeline(self, ponent_names: list[str]) -> pipeline: pipeline = pipeline() for name in ponent_names:ponent = self.get(name)if ponent: pipeline.add_ponent(ponent) return pipeline

5. 性能监控和优化5.1 性能指标

from dataclasses import dataclassfrom typing import dictimport time@dataclassclass performancemetrics: latency: float memory_usage: float token_count: int success_rate: floatclass performancemonitor: def __init__(self): self.metrics: dict[str, list[performancemetrics]] = {} def record_operation( self, operation_name: str, metrics: performancemetrics ): if operation_name not in self.metrics:self.metrics[operation_name] = [] self.metrics[operation_name].append(metrics) def get_average_metrics( self, operation_name: str ) -> optional[performancemetrics]: if operation_name not in self.metrics:return none metrics_list = self.metrics[operation_name] return performancemetrics(latency=sum(m.latency for m in metrics_list) / len(metrics_list),memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list),token_count=sum(m.token_count for m in metrics_list) / len(metrics_list),success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list) )

5.2 优化策略

class PerformanceOptimizer: def __init__(self, monitor: PerformanceMonitor): self.monitor = monitor self.thresholds = {‘latency’: 1.0, # seconds’memory_usage’: 512, # MB’token_count’: 1000,’success_rate’: 0.95 } def analyze_performance(self, operation_name: str) -> List[str]: metrics = self.monitor.get_average_metrics(operation_name) if not metrics:return [] remendations = [] if metrics.latency > self.thresholds[‘latency’]:remendations.append( "Consider implementing caching or parallel processing") if metrics.memory_usage > self.thresholds[‘memory_usage’]:remendations.append( "Optimize memory usage through batch processing") if metrics.token_count > self.thresholds[‘token_count’]:remendations.append( "Implement prompt optimization to reduce token usage") if metrics.success_rate < self.thresholds[‘success_rate’]:remendations.append( "Review error handling and implement retry mechanisms") return remendations

结论

构建企业级agent系统需要仔细注意:

结构化提示管理和版本控制高效且可扩展的内存系统可观察、可追溯的推理过程模块化和可重用的组件设计全面的性能监控和优化

以上就是构建企业代理系统:核心组件设计与优化的详细内容,更多请关注范的资源库其它相关文章!

转载请注明:范的资源库 » 构建企业代理系统:核心组件设计与优化

喜欢 (0)