请我喝杯咖啡☕
*备忘录:
我的帖子解释了 equal()、eq() 和 ne()。我的帖子解释了 gt() 和 lt()。我的帖子解释了 ge() 和 le()。
isclose() 可以检查第一个 0d 或更多 d 张量的零个或多个元素是否等于或接近等于第二个 0d 或更多 d 张量的零个或多个元素,得到 0d 或更多零个或多个元素的 d 张量如下所示:
*备忘录:
isclose() 可以与 torch 或张量一起使用。第一个参数(输入)使用 torch 或使用张量(必需类型:int、float、plex 或 bool 的张量)。带有 torch 的第二个参数或带有张量的第一个参数是其他(必需类型:int、float、plex 或 bool 的张量)。带有 torch 的第三个参数或带有张量的第二个参数是 rtol(optional-default:1e-05-type:float)。带有 torch 的第四个参数或带有张量的第三个参数是 atol(optional-default:1e-08-type:float)。带有 torch 的第五个参数或带有张量的第四个参数是 equal_nan(optional-default:false-type:bool):*备注:如果为 true,则 nan 和 nan 返回 true。基本上,nan 和 nan 返回 false。公式为 |输入 – 其他|
import torchtensor1 = torch.tensor([1.00001001, 1.00000996, 1.00000995, torch.nan])tensor2 = torch.tensor([1., 1., 1., torch.nan])torch.isclose(input=tensor1, other=tensor2)torch.isclose(input=tensor1, other=tensor2, rtol=1e-05, atol=1e-08, equal_nan=False)# 0.00001 # 0.00000001tensor1.isclose(other=tensor2)torch.isclose(input=tensor2, other=tensor1)# tensor([False, False, True, False])torch.isclose(input=tensor1, other=tensor2, equal_nan=True)# tensor([False, False, True, True])tensor1 = torch.tensor([[1.00001001, 1.00000996],[1.00000995, torch.nan]])tensor2 = torch.tensor([[1., 1.],[1., torch.nan]])torch.isclose(input=tensor1, other=tensor2)torch.isclose(input=tensor2, other=tensor1)# tensor([[False, False],# [True, False]])tensor1 = torch.tensor([[[1.00001001], [1.00000996]],[[1.00000995], [torch.nan]]])tensor2 = torch.tensor([[[1.], [1.]],[[1.], [torch.nan]]])torch.isclose(input=tensor1, other=tensor2)torch.isclose(input=tensor2, other=tensor1)# tensor([[[False], [False]],# [[True], [False]]])tensor1 = torch.tensor([[1.00001001, 1.00000996],[1.00000995, torch.nan]])tensor2 = torch.tensor([1., 1.])torch.isclose(input=tensor1, other=tensor2)torch.isclose(input=tensor2, other=tensor1)# tensor([[False, False],# [True, False]])tensor1 = torch.tensor([[1.00001001, 1.00000996],[1.00000995, torch.nan]])tensor2 = torch.tensor(1.)torch.isclose(input=tensor1, other=tensor2)torch.isclose(input=tensor2, other=tensor1)# tensor([[False, False],# [True, False]])tensor1 = torch.tensor([0, 1, 2])tensor2 = torch.tensor(1)torch.isclose(input=tensor1, other=tensor2)# tensor([False, True, False])tensor1 = torch.tensor([0.+0.j, 1.+0.j, 2.+0.j])tensor2 = torch.tensor(1.+0.j)torch.isclose(input=tensor1, other=tensor2)# tensor([False, True, False])tensor1 = torch.tensor([False, True, False])tensor2 = torch.tensor(True)torch.isclose(input=tensor1, other=tensor2)# tensor([False, True, False])
以上就是PyTorch 中的 isclose的详细内容,更多请关注范的资源库其它相关文章!
转载请注明:范的资源库 » PyTorch中的isclose