本站资源收集于互联网,不提供软件存储服务,每天免费更新优质的软件以及学习资源!

Pytorch中的Fivecrop

网络教程 app 1℃

Pytorch中的Fivecrop

给我买咖啡☕

*备忘录:

我的帖子解释了牛津iiitpet()。

> fivecrop()可以将图像裁剪成5个部分(左上角,右上,左下,右下和中心),如下所示:

*备忘录:

>初始化的第一个参数是大小(必需类型:int或tuple/list/list(int)或size()):*备忘录:是[高度,宽度]。>必须是1个元组/列表必须是具有1或2个元素的1d。单个值(int或tuple/list(int))是指[size,size]。第一个参数是img(必需类型:pil图像或张量(int)):*备忘录:张量必须为2d或3d。不使用img =。建议根据v1或v2使用v2?我应该使用哪一个?

from torchvision.datasets import OxfordIIITPetfrom torchvision.transforms.v2 import FiveCropfivecrop = FiveCrop(size=100)fivecrop# FiveCrop(size=(100, 100))fivecrop.size# (100, 100)origin_data = OxfordIIITPet( root="data", transform=None)s500_394origin_data = OxfordIIITPet( # `s` is size. root="data", transform=FiveCrop(size=[500, 394]))s300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=300))s200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=200))s100_data = OxfordIIITPet( root="data", transform=FiveCrop(size=100))s50_data = OxfordIIITPet( root="data", transform=FiveCrop(size=50))s10_data = OxfordIIITPet( root="data", transform=FiveCrop(size=10))s1_data = OxfordIIITPet( root="data", transform=FiveCrop(size=1))s200_300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[200, 300]))s300_200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[300, 200]))import matplotlib.pyplot as pltdef show_images1(fcims, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = [‘Top-left’, ‘Top-right’, ‘Bottom-left’, ‘Bottom-right’, ‘Center’] for i, fcim in zip(range(1, 6), fcims): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) plt.tight_layout() plt.show()plt.figure(figsize=(7, 9))plt.title(label="s500_394origin_data", fontsize=14)plt.imshow(X=origin_data[0][0])show_images1(fcims=s500_394origin_data[0][0], main_title="s500_394origin_data")show_images1(fcims=s300_data[0][0], main_title="s300_data")show_images1(fcims=s200_data[0][0], main_title="s200_data")show_images1(fcims=s100_data[0][0], main_title="s100_data")show_images1(fcims=s50_data[0][0], main_title="s50_data")show_images1(fcims=s10_data[0][0], main_title="s10_data")show_images1(fcims=s1_data[0][0], main_title="s1_data")show_images1(fcims=s200_300_data[0][0], main_title="s200_300_data")show_images1(fcims=s300_200_data[0][0], main_title="s300_200_data")# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓def show_images2(im, main_title=None, s=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = [‘Top-left’, ‘Top-right’, ‘Bottom-left’, ‘Bottom-right’, ‘Center’] if not s: s = [im.size[1], im.size[0]] fc = FiveCrop(size=s) # Here for i, fcim in zip(range(1, 6), fc(im)): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) # Here plt.tight_layout() plt.show()plt.figure(figsize=(7, 9))plt.title(label="s500_394origin_data", fontsize=14)plt.imshow(X=origin_data[0][0])show_images2(im=origin_data[0][0], main_title="s500_394origin_data")# show_images2(im=origin_data[0][0], main_title="s500_394origin_data",# s=[500, 394])show_images2(im=origin_data[0][0], main_title="s300_data", s=300)show_images2(im=origin_data[0][0], main_title="s200_data", s=200)show_images2(im=origin_data[0][0], main_title="s100_data", s=100)show_images2(im=origin_data[0][0], main_title="s50_data", s=50)show_images2(im=origin_data[0][0], main_title="s10_data", s=10)show_images2(im=origin_data[0][0], main_title="s1_data", s=1)show_images2(im=origin_data[0][0], main_title="s200_300_data", s=[200, 300])show_images2(im=origin_data[0][0], main_title="s300_200_data", s=[300, 200])

以上就是Pytorch中的Fivecrop的详细内容,更多请关注范的资源库其它相关文章!

转载请注明:范的资源库 » Pytorch中的Fivecrop

喜欢 (0)